every sperm is sacred

IckyjenlucNota Bene: the following blog post might warrant one of those cheesy "parental discretion" advisories favored by squeamish TV networks, although it's really quite tame from a bloggy perspective. Let the reader beware!

We owe so much of our rich array of pop-cultural references to the Monty Python troupe's satirical genius. There's the "Dead Parrot" sketch, the Ministry of Silly Walks, the entire Holy Grail film — Jen-Luc Piquant is particularly fond of the faux-French insults: "I blow my nose at you, English pig dog!" — and of course, the musical sketch that forms the centerpiece of Monty Python's The Meaning of Life: "Every Sperm is Sacred." The incomparable Michael Palin plays a poor Catholic man who must sell his 63 children for medical experimentation because he and his wife (played by a cross-dressing Terry Jones) can no longer afford their care and feeding. Asked why they don't, say, practice contraception, he explains this is against Catholic dogma, and breaks into song. C'mon, you all know the chorus:

Every sperm is sacred
Every sperm is great.
If a sperm is wasted,
God gets quite irate.

There's actually some truth to the sacredness of sperm if you look at its history in various global cultures — or rather, the sacredness of semen, the fluid which contains the sperm. In ancient China, most gemstones were said to be drops of divine semen that had hardened after fertilizing the earth. For instance, jade was believed to be the dried semen of celestial dragons. (Note to self: never wear jade again.) In Chi Kung and other forms of Chinese medicine, "jing" is sexual energy, which can also denote "essence" or "spirit." That's why masturbation isn't advised among Chi Kung practitioners: it's a form of energy suicide. They must be Masters of Their Domain. Wikipedia informs me that there is a Chinese proverb that literally equates a single drop of semen to ten drops of blood. So it's better to bleed than masturbate. In ancient Rome, the orchid was believed to derive from the semen of copulating satyrs, just because its twin bulbs reminded the Romans of testicles. That seems quite rational compared to the Etoro people of Papua New Guinea, who believe that young boys must perform oral acts upon their elders and (ahem) swallow the sperm in order to become sexually mature. (There is an unsurprisingly high rate of homosexuality among the tribe.)

Ah, but today, we are the very model of modern scientific rationalists. Sometimes an orchid is just an pretty flower, and puberty can take its own natural course, thank you very much, with no need for gratuitous rituals involving fellatio. For us, sperm has a predominantly practical purpose of being one-half of the material required for us to reproduce. And sometimes Nature needs a little help from your friendly laboratory petri dish, i.e., in vitro fertilization (IVF). The science of fertility has made great strides over the few decades, but there's still room for improvement, particularly when it comes to techniques for sorting out the most desirable sperm for fertilization.

A team of researchers at the University of California, Irvine (UCI), and the University of San Diego (UCSD) have developed an interesting new sperm sorting technique, which will be presented at the upcoming Frontiers in Optics meeting next month in San Jose, California. It's the annual conference of the Optical Society of America in conjunction with the American Physical Society's Division of Laser Science. They used special cone-shaped lenses called "axicons" which, when combined with a standard lens and a laser, form a ring-shaped focal point, forming an annular trap. It's a well-known technique used in laser machining, and to trap atoms in more fundamental physics research. (That's right: physics isn't just for physicists. Some of its best techniques are finding their way into biology, too, among other fields.)

The nice thing about the technique is you can build a version of the trap that is "tunable" by adding a couple of extra axicons. Shifting one of those lenses slightly along the optical axis changes the diameter of the ring, making it suitable for biological organisms across a broad range of sizes: not just sperm, but algae, microbes, etc., as well. And according to team member Bing Shao, "The unique geometrical feature of the annular trap provides a way to confine a sperm in the field of view for an extended period without having to deal with sharp turns or changes in swimming curvature." Because sperm are active, slippery little buggers. It's all about finding the egg with them; they just can't sit back and chill.

You can also adjust the power output of the laser you use to make it ideally suited to sperm sorting. In this application, the trap acts as a kind of "speed bump": slower, weaker sperm moving at energies below the threshold of the laser power will be obstructed, perhaps even redirected, while faster, stronger sperm with energies above the critical power threshold just sail right on by. They proved it by using gorilla sperm as a control in the experiments: gorilla sperm is slower and weaker than human sperm. (Jen-Luc suspects they obtained the sperm from the Henry  Doorly Zoo in Omaha, Nebraska, which has the distinction of being the largest gorilla sperm bank in the world.)

The next step is to try the technique using sea urchin sperm — heck, why not? (Actually, sea urchin sperm turns out to be ideal for investigating the correlation between sperm velocity and fertilization ability, simply because it's much easier to observe the fertilization and subsequent embryonic development.) The UCSD/UCI group would also like to repeat the experiments adding a chemoattractant — the chemical released from eggs to draw the sperm to the target in the first place — to the center of the ring; the recent results were from experiments using no chemoattractant. It's sufficient to separate faster, stronger sperm from the slower, weaker variety, but adding the chemoattractant would make it possible to also select for a sperm with a higher sensitivity to the chemoattractant — yet another important variable to what makes a successful sperm.

This could all be good news for couples desiring children (or those engaged in animal husbandry) who are having trouble conceiving, since being able to sort the faster sperm improves chances of conception Every_sperm_is_sacred1 — the sperm that gets to the egg first gets to fertilize it. However, there are troubling aspects as well, namely, using the technique to preferentially select for gender, or even specific genetic characteristics. The former is already possible using  a variation of IVF (combining it with pre-implantation genetic diagnosis, or PGD), but sperm sorting has been less reliable. The UCSD/UCI technique could change that.  X sperm are heavier and swim more slowly compared to the lighter, faster Y sperm, so the technique could easily be used to sort sperm carrying the gene for a female child from those carrying the gene for a male child. Couples could then choose their child's gender with the same, if not better, accuracy as with IVF-PGD. It's all about having the options.

Speed is oh-so-important for a humble sperm, and not just when it comes to human reproduction. In July, New Scientist reported that how fast sperm travel in any given primate species depends on how promiscuous those species tend to be: the more sexual partners, the more competition, and the faster the sperm feel the need to travel in order to be first to fertilize that all-important ovum. (It seems there is also a theory that rates of female promiscuity in primate species may also determine the size of the male's testicles for a given species, according to this excerpt from the Soma Literary Review.) Researchers at the University of California, San Diego, led by Jaclyn Nascimento, studied both the speed and force of sperm samples from humans, gorillas, chimpanzees, and rhesus monkeys.

How did they get the sperm? Well, one presumes the human males were simply supplied with the usual plastic cup and lad's mags and given a bit of privacy. The chimps and monkeys were tricked into giving it up via the use of artificial vaginas (apparently they're not too discriminating). But the gorillas required a bit more finesse: they were trained to supply sperm in exchange for candy with — and I quote — "the helping hand of a researcher." Yikes! Yanno, you just can't make this stuff up. And inquiring minds want to know: Which unnamed UCSD researcher got stuck with the thankless task of providing a "hand job" to a very large gorilla? Sounds like an assignment for your least favorite grad student… or a member of the Etoro tribe.

But we digress. This is Very Important Science, after all. Once the sperm from the various species were collected, the samples were diluted and their movement captured on film, then analyzed via computer to determine the speed of any given sperm. Human sperm clocked in at around 0.2 kilometers per hour — and were I not feeling so lazy (it's summer, yo!), I might be inclined to translate that out of the metric for the benefit of US readers, but, um, I'm totally lazy. Suffice to say, that's on a par with findings of prior studies, so no surprises there. Sperm from chimps and monkeys — who apparently will do the horizontal mambo with just about anything — were regular little speed demons, rocketing ahead at about 0.7 kilometers per hour. As for those sweet, faithfully monogamous gorillas, they had the slowest sperm motility of all, meandering along at a pathetic 0.1 kilometers per hour.

As we've seen, it's not just swimming speed, but swimming force that is critical to a sperm's ultimate success, and Nascimento's team looked at that aspect, too, using "optical tweezers" to hold the sperm in place with laser light. (There's a nice introduction to optical tweezers, courtesy of Stanford University, here. Stanford, of course, can lay claim to Steven Chu, who used the technique in his research involving laser cooling and trapping of atoms, which in turned snagged him the 1997 Nobel Prize in Physics.) The strongest swimmers could break past the barrier and move forward, while the weaker swimmers remained stuck.

And once again, chimp and monkey sperm emerged as the clear winners, swimming with a force of about 50 piconewtons, compared to 5 piconewtons in human sperm, and 2 piconewtons in gorilla sperm. One might be tempted to feel bad for the gorillas, with their lazy, under-performing sperm, but  considering the implication — faster, stronger sperm evolve because a species is promiscuous.  The gorillas in the UCSD study can take comfort in the fact that their mates are far less likely to cheat. 

It's rather tough for aspiring fathers to do much about changing the size of their testicles, and it's probably equally unlikely that their sperm will ever be as fast as a chimpanzee's. But the Mayo Clinic helpfully offers a few useful tips for fostering "top-performing sperm" (i.e., with peak quantity, quality, and motility) on its Website, in case anyone's interested. The usual suspects are there — no smoking, regular exercise, maintaining a healthy weight, limiting alcohol, etc. — but there were a few surprises: did you know that male sperm counts are higher in the winter than in summer? I sure didn't. But I had read somewhere that riding a bicycle could adversely affect sperm production. (It certainly didn't prevent Tour de France multi-champion Lance Armstrong from fathering several children, however, so the jury's probably still out on that.)

Perhaps there are some male readers out there thinking, "Wait a sec — how come all of the pressure is on us? What are the ladies doing to increase their chances of conception?" I'm so glad you asked! Scientists are laboring on that aspect, too, seeking to build on the progress made in IVF over the last few decades. The technique is practically commonplace by now, with at least 200,000 IVF children born in 2002 alone. But there are still some issues, namely, further improving successful rates of such embryos developing into strong, viable fetuses.

Researchers at the University of Tokyo, for example, are developing a microfluidic lab-on-a-chip on which up to 20 eggs can be fertilized and nurtured through that critical first stage of pregnancy, until they are ready to be implanted in the womb. They grow endometrial cells — which line a real womb — on the chip too, for extra protection. Ultimately, the goal is create a fully automated artificial womb that mimics what happens in a human body. The Tokyo researchers have achieved some improvement in success rates: in recent experiments on mice, out of 50 fertilized eggs grown on a chip, 30 developed into embryos, compared to 26 out of 50 using standard IVF.

So that's the memo on the latest reproductive research out there. Nice to know that physics is doing its part to preserve the species. As are the pharmaceutical companies, namely, the manufacturers of Viagra. Since we opened with a song, it seems fitting to end with one: this rousing rendition of "Viva Viagra," a commercial featured prominently on Spike-TV, in which a group of middle-aged men get together for a jam session expressing the joys of overcoming erectile dysfunction. (H/t: Jeff Fecke of Shakesville)

8 thoughts on “every sperm is sacred”

  1. lol Jennifer, giving hand jobs to gorillas, in California that must be only one step away from servicing the football team.
    But it does sort of take away the spontaneity of the whole thing, you know 1) put this sheath cobered in spermicides on to prevent pregnancy, and 2) when the girls want to get pregnant, lets make them jump thru loops and hurdles, to pick the fastest or most energetic.
    I guess there’ll be a sigh of relief from some of the females of the species when we can incubate babies from IVF to birth in ‘artificial’ Japanese wombs.
    Clearly fears over overpopulation have died away, and there is little risk of the human race becoming extinct as long as one man has a harem or two.
    But never mind smoking (and dioxins) or cycle riding. What are all those hormones in chickens & meat doing to the sperm count – any results out yet?

  2. lol, nice article, thanks!
    “Etoro people of Papua New Guinea, who believe that young boys must perform oral acts upon their elders and (ahem) swallow the sperm in order to become sexually mature”
    Is this the same tribe that practices cannibalism??? Sheesh…

  3. I’m thinking you could have recycled the title of the last blog entry for this one. Remember, every sperm is needed in your neighborhood.
    Matt

  4. You may not be aware, but “manual methods” are widely used in animal breeding, and most vets have considerable personal experience.
    http://www.dolittler.com/index.cfm/2006/9/6/pet.vet.vpov.9.6.06
    http://www.dolittler.com/index.cfm/2007/3/21/pet.vet.dog.cat.3.21.07
    I’ve seen a deadly serious training video explaining how to use a plastic bag on a stallion, how it’s more convenient than an artificial vagina, and the stallions don’t seem to lose interest in more traditional foal-making.
    (Regarding the previous blog entry… how can any discussion of fun physics omit liquid nitrogen ice cream?)

  5. Forget about the Parental Advisory, you need a Hilarity Advisory.
    I can see the necessity for the safety video for collecting samples, one pal in University was collecting a sample from a randy bull and toro missed the plastic bag. The sleeve of his labcoat, on the other hand…

  6. Just for reference, Google makes it oh-so-easy to do conversions from x units to y.
    Human sperm: http://www.google.com.au/search?q=0.2+kilometers+per+hour+in+inches+per+second
    Chimp and monkey sperm: http://www.google.com.au/search?q=0.7+kilometers+per+hour+in+inches+per+second
    Gorilla sperm: http://www.google.com.au/search?q=0.1+kilometers+per+hour+in+inches+per+second
    Of course, these are nothing compared to Superman’s sperm, according to Larry Niven: “Ejaculation of semen is entirely involuntary in the human male, and in all other forms of terrestrial life. It would be unreasonable to assume otherwise for a kryptonian. But with kryptonian muscles behind it, Kal-El’s semen would emerge with the muzzle velocity of a machine gun bullet.”

  7. Does anyone else find the idea of an artificial womb a little creepy? Or is that just the Luddite in me?
    By the way, thanks for the advice in the comments of Asymptotia.

  8. “Does anyone else find the idea of an artificial womb a little creepy? Or is that just the Luddite in me?”
    If it helps a couple have children who normally couldn’t then it’s just fine with me.

Comments are closed.

Scroll to Top